Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.845
1.
BMJ Case Rep ; 17(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38724215

Autoimmune encephalitis due to glial fibrillar acidic protein (GFAP) astrocytopathy is a rare cause of subacute neuropsychiatric changes. In this case, a young patient presented with a viral prodrome and meningismus, followed by progressive encephalopathy and movement disorders over the span of 2 weeks. Due to his clinical trajectory, inflammatory cerebrospinal fluid (CSF) analysis, initial normal brain imaging and negative serum autoimmune encephalopathy panel, his initial diagnosis was presumed viral meningoencephalitis. The recurrence and progression of neuropsychiatric symptoms and myoclonus despite antiviral treatment prompted further investigation, inclusive of testing for CSF autoimmune encephalopathy autoantibodies, yielding a clinically meaningful, positive GFAP autoantibody. This case highlights the importance of appropriately testing both serum and CSF autoantibodies when an autoimmune encephalitic process is considered. Through this case, we review the clinical and radiographic manifestations of GFAP astrocytopathy, alongside notable pearls pertaining to this autoantibody syndrome and its management.


Autoantibodies , Encephalitis , Glial Fibrillary Acidic Protein , Humans , Male , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/immunology , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Encephalitis/diagnosis , Encephalitis/immunology , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , Astrocytes/pathology , Astrocytes/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/immunology , Hashimoto Disease/diagnosis , Hashimoto Disease/blood , Diagnosis, Differential , Adult , Magnetic Resonance Imaging
2.
Rev. neurol. (Ed. impr.) ; 78(9)1-15 may 2024. ilus
Article Es | IBECS | ID: ibc-CR-366

Introducción Presentamos un paciente diagnosticado de narcolepsia de tipo 1 que desarrolló una encefalitis autoinmune posvacunal y/o tras una infección por el SARS-CoV-2. Caso clínico Paciente de 23 años que es remitido a urgencias por trastorno del lenguaje y temblor, acompañados de cefalea, trastorno del comportamiento, disfunción autonómica, crisis focal motora derecha y letargo. El paciente había sido vacunado siete semanas antes con la primera dosis de la vacuna Moderna (ARN mensajero) y, cuatro semanas después de la vacunación, presentó una infección por el SARS-CoV-2 con test de antígenos positivo. Resultados La exploración neurológica mostró un nivel de conciencia normal y una afasia mixta de predominio motor (campimetría, pares craneales, reflejos y sensibilidad normales). El test de reacción en cadena de la polimerasa para la COVID-19 fue negativo. En el líquido cefalorraquídeo se apreció una linfocitosis y proteínas elevadas. Los cultivos para hongos y bacterias fueron negativos. Los anticuerpos onconeuronales fueron normales. La resonancia magnética cerebral mostró en la secuencia de difusión una restricción con afectación cortical y morfología giral en el hemisferio cerebral izquierdo, y distribución parcheada con afectación de lóbulo frontal y temporal izquierdos. Una tomografía axial computarizada de tórax-abdomen-pelvis fue normal, al igual que las ecografías pélvica y escrotal. Al paciente se le trató con plasmaféresis y corticoides, con buena evolución clínica y resolución casi completa de las anomalías en la neuroimagen. Conclusión Se trata de un paciente con narcolepsia de tipo 1 con criterios de encefalitis autoinmune de comienzo subagudo. La infección por el SARS-CoV-2 o la vacunación, o ambas, constituyen un riesgo para desarrollar una o más enfermedades autoinmunes con la edad –como sucede en este caso–, lo que permite comprender la implicación de procesos inmunomediados en la fisiopatología de estas enfermedades. (AU)


INTRODUCTION We present a narcolepsy type 1 patient that develop an autoimmune encephalitis post vaccine and/or a SARS-CoV-2 infection.CASE REPORTAt 23 years old, the patient was referred to the emergency room with difficult speaking, headache and tremor followed by changes in behavior, autonomic dysfunction, right focal motor seizure and lethargy. He has received seven weeks before mRNA-1273 (Moderna) vaccine followed by a SARS-CoV-2 infection four weeks after vaccination (positive antigen test).RESULTSThe neurological examination was normal (visual fields, cranial nerves, motor, sensory and reflexes). Nasopharyngeal swab polymerase chain reaction (PCR) testing for COVID-19 was negative. Cerebrospinalfluid (CSF) had highly elevated protein and lymphocytic pleocytosis. CSF bacterial and fungal cultures for viral infections were negative. Brain magnetic resonance imaging (MRI) showed no abnormality on the non-enhanced sequences but the diffusion weighted imaging showed restricted diffusion with high signal on the left hemisphere mainly in the cerebral cortex with a gyro morphology, patched distribution with involvement of the temporal and frontal lobes. Chest, abdomen and pelvis computed tomography; pelvic and scrotum ultrasound, showed no malignancy. Onconeural antibodies were negative. The patient was treated with plasmapheresis and corticosteroids with a good clinical outcome and near complete resolution of the MRI abnormalities. CONCLUSION. The patient fulfilled the diagnostic criteria for autoimmune encephalitis with subacute onset. COVID-19 infection and vaccination could constitute a risk in a patient with narcolepsy as in this case and, could help to provide better understanding of the implication of immune-mediated processes in the pathophysiology of the diseases. (AU)


Humans , Young Adult , Comorbidity , Autoimmune Diseases of the Nervous System/diagnostic imaging , Vaccination/adverse effects , Narcolepsy
3.
Brain Nerve ; 76(5): 534-539, 2024 May.
Article Ja | MEDLINE | ID: mdl-38741493

Autoimmune nodopathy (AN), a newly established category of autoimmune disease, refers to an immune-mediated neuropathy associated with development of autoantibodies against membrane proteins, including neurofascin 186, neurofascin 155, contactin-1, and contactin-associated protein 1 located in the nodes of Ranvier or paranodes. Subclass analysis of these autoantibodies reveals predominant elevation of immunoglobulin (G4. Patients with AN show clinical and laboratory characteristics such as distal-predominant sensorimotor disturbance, sensory ataxia, poor response to intravenous immunoglobulin, and highly elevated cerebrospinal fluid protein levels. B cell-depletion therapy using an anti-CD20 monoclonal antibody is effective for patients with AN. Autoantibody measurement is beneficial not only for diagnosis but also for deciding treatment strategies for AN.


Autoantibodies , Humans , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/diagnosis , Autoimmune Diseases/therapy , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/therapy
4.
Brain Nerve ; 76(5): 562-568, 2024 May.
Article Ja | MEDLINE | ID: mdl-38741497

Autoimmune autonomic ganglionopathy (AAG) and acute autonomic sensory neuropathy (AASN) are immune-mediated neuropathies that affect the autonomic and/or dorsal root ganglia. Autoantibodies against the nicotinic ganglionic acetylcholine receptor (gAChR) detected in the sera of patients with AAG play a key role in the pathogenesis of this condition. Notably, gAChR antibodies are not detected in the sera of patients with AASN. Currently, AAG and AASN are not considered to be on the same spectrum with regard to disease concept based on clinical symptoms and laboratory findings. However, extra-autonomic brain symptoms (including psychiatric symptoms and personality changes) and endocrine disorders occur in both diseases, which suggests shared pathophysiology between the two conditions.


Autoantibodies , Autonomic Nervous System Diseases , Ganglia, Autonomic , Humans , Ganglia, Autonomic/immunology , Autoantibodies/immunology , Autonomic Nervous System Diseases/immunology , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/diagnosis , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Receptors, Nicotinic/immunology , Acute Disease , Autoimmune Diseases/immunology
5.
Ann Clin Transl Neurol ; 11(5): 1325-1337, 2024 May.
Article En | MEDLINE | ID: mdl-38644648

OBJECTIVE: To delineate the clinical characteristics of antibody-negative autoimmune encephalitis (AE) and to investigate factors associated with long-term outcomes among antibody-negative AE. METHODS: Patients diagnosed with antibody-negative AE were recruited from January 2016 to December 2022 at the Second Xiangya Hospital of Central South University. The study assessed the long-term outcomes of antibody-negative AE using the modified Rankin scale (mRS) and the Clinical Assessment Scale in Autoimmune Encephalitis (CASE). Predictors influencing long-term outcomes were subsequently analyzed. External validation of RAPID scores (refractory status epilepticus [RSE], age of onset ≥60 years, ANPRA [antibody-negative probable autoimmune encephalitis], infratentorial involvement, and delay of immunotherapy ≥1 month) was performed. RESULTS: In total, 100 (47 females and 53 males) antibody-negative AE patients were enrolled in this study, with approximately 49 (49%) experiencing unfavorable long-term outcomes (mRS scores ≥3). Antibody-negative AE was subcategorized into ANPRA, autoimmune limbic encephalitis (LE), and acute disseminated encephalomyelitis (ADEM). Psychiatric symptoms were prevalent in LE and ANPRA subtypes, while weakness and gait instability/dystonia were predominant in the ADEM subtype. Higher peak CASE scores (odds ratio [OR] 1.846, 95% confidence interval [CI]: 1.163-2.930, p = 0.009) and initiating immunotherapy within 30 days (OR 0.210, 95% CI: 0.046-0.948, p = 0.042) were correlated with long-term outcomes. Receiver operating characteristic (ROC) analysis returned that the RAPID scores cutoff of 1.5 best discriminated the group with poor long-term outcomes (sensitivity 85.7%, specificity 56.9%). INTERPRETATION: The ANPRA subtype exhibited poorer long-term outcomes compared to LE and ADEM subtypes, and early immunotherapy was crucial for improving long-term outcomes in antibody-negative AE. The use of RAPID scoring could aid in guiding clinical decision making.


Encephalitis , Hashimoto Disease , Humans , Male , Female , Middle Aged , Encephalitis/immunology , Encephalitis/diagnosis , Encephalitis/therapy , Adult , Aged , Hashimoto Disease/immunology , Hashimoto Disease/diagnosis , Hashimoto Disease/therapy , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/physiopathology , Autoimmune Diseases of the Nervous System/therapy , Young Adult , Autoantibodies/blood , Adolescent , Limbic Encephalitis/immunology , Limbic Encephalitis/diagnosis , Limbic Encephalitis/therapy , Immunotherapy/methods
6.
J Clin Apher ; 39(3): e22112, 2024 Jun.
Article En | MEDLINE | ID: mdl-38634442

INTRODUCTION: Autoimmune encephalitis (AE) comprises a heterogeneous group of autoantibody-mediated disorders targeting the brain parenchyma. Therapeutic plasma exchange (TPE), one of several first-line therapies for AE, is often initiated when AE is suspected, albeit prior to an established diagnosis. We sought to characterize the role of TPE in the treatment of suspected AE. METHODS: A single-center, retrospective analysis was performed of adults (≥18 years) who underwent at least one TPE procedure for "suspected AE." The following parameters were extracted and evaluated descriptively: clinicopathologic characteristics, treatment course, TPE-related adverse events, outcomes (e.g., modified Rankin scale [mRS]), and diagnosis once investigation was complete. RESULTS: A total of 37 patients (median age 56 years, range 28-77 years, 62.2% male) were evaluated. Autoimmune antibody testing was positive in serum for 43.2% (n = 16) and cerebrospinal fluid for 29.7% (n = 11). Patients underwent a median of five TPE procedures (range 3-16), with 97.3% (n = 36) via a central line and 21.6% (n = 8) requiring at least one unit of plasma as replacement fluid. Fifteen patients (40.5%) experienced at least one TPE-related adverse event. Compared with mRS at admission, the mRS at discharge was improved in 21.6% (n = 8), unchanged in 59.5% (n = 22), or worse in 18.9% (n = 7). Final diagnosis of AE was determined to be definite in 48.6% (n = 18), probable in 8.1% (n = 3) and possible in 27.0% (n = 10). Six (16.2%) patients were ultimately determined to have an alternate etiology. CONCLUSION: Empiric TPE for suspected AE is generally well-tolerated. However, its efficacy remains uncertain in the absence of controlled trials, particularly in the setting of seronegative disease.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Plasma Exchange , Adult , Humans , Male , Middle Aged , Aged , Female , Plasma Exchange/methods , Retrospective Studies , Plasmapheresis , Autoantibodies
7.
Front Immunol ; 15: 1368275, 2024.
Article En | MEDLINE | ID: mdl-38562943

Autoimmune encephalitis (AE) broadly refers to inflammation of the brain parenchyma mediated by autoimmune mechanisms. In most patients with AE, autoantibodies against neuronal cell surface antigens are produced by B-cells and induce neuronal dysfunction through various mechanisms, ultimately leading to disease progression. In recent years, B-cell targeted therapies, including monoclonal antibody (mAb) therapy and chimeric antigen receptor T-cell (CAR-T) therapy, have been widely used in autoimmune diseases. These therapies decrease autoantibody levels in patients and have shown favorable results. This review summarizes the mechanisms underlying these two B-cell targeted therapies and discusses their clinical applications and therapeutic potential in AE. Our research provides clinicians with more treatment options for AE patients whose conventional treatments are not effective.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Autoantibodies , Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases of the Nervous System/drug therapy
8.
J Integr Neurosci ; 23(4): 79, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38682229

The clinical category of immune-mediated cerebellar ataxias (IMCAs) is now recognized after 3 decades of clinical and experimental research. The cerebellum gathers about 60% of neurons in the brain, is enriched in numerous plasticity mechanisms, and presents a large variety of antigens at the neuroglial level: ion channels and related proteins, synaptic adhesion/organizing proteins, transmitter receptors, and glial cells. Cerebellar circuitry is especially vulnerable to immune attacks. After the loss of immune tolerance, IMCAs present in an acute or subacute manner with various combinations of a vestibulocerebellar syndrome (VCS), a cerebellar motor syndrome (CMS), and a cerebellar cognitive affective syndrome/Schmahmann's syndrome (CCAS/SS). IMCAs include gluten ataxia (GA), post-infectious cerebellitis (PIC), Miller Fisher syndrome (MFS), paraneoplastic cerebellar degeneration (PCD), opsoclonus myoclonus syndrome (OMS), anti-glutamic acid decarboxylase (anti-GAD) ataxia, and glial fibrillary acidic protein (GFAP) astrocytopathy (GFAP-A). In addition, multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), Behçet disease, and collagen-vascular disorders may also present with cerebellar symptoms when lesions involve cerebellar afferences/efferences. Patients whose clinical profiles do not fit with IMCAs are now gathered in the group of primary autoimmune cerebellar ataxias (PACAs). Latent auto-immune cerebellar ataxia (LACA) refers to a clinical stage with a slow progressive course and a lack of obvious auto-immune background. At a pre-symptomatic stage, patients remain asymptomatic, whereas at the prodromal stage aspecific symptoms occur, announcing the symptomatic neuronal loss. LACA corresponds to a time-window where an intervention could lead to preservation of plasticity mechanisms. Patients may evolve from LACA to PACA and typical IMCAs, highlighting a continuum. Immune ataxias represent a model to elucidate the sequence of events leading to destruction of cerebellar neuronal reserve and develop novel strategies aiming to restore plasticity mechanisms.


Cerebellar Ataxia , Humans , Cerebellar Ataxia/immunology , Cerebellar Ataxia/physiopathology , Ataxia/immunology , Ataxia/physiopathology , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/physiopathology
10.
Brain Nerve ; 76(4): 353-360, 2024 Apr.
Article Ja | MEDLINE | ID: mdl-38589280

Herein, the author summarize the basic findings on the neuropathology of inflammatory and autoimmune central nervous system (CNS) diseases. Current knowledge on infectious, demyelinating, and autoimmune diseases have also been reported. Further, I emphasize the importance of considering the neuropathology of meningitis, encephalitis, and abscesses as infectious diseases; multiple sclerosis and neuromyelitis optica as demyelinating diseases; and vasculitis, paraneoplastic neurological syndrome, and collagen diseases as autoimmune diseases.


Autoimmune Diseases of the Nervous System , Autoimmune Diseases , Central Nervous System Diseases , Multiple Sclerosis , Neuromyelitis Optica , Humans
11.
Neuroradiology ; 66(5): 653-675, 2024 May.
Article En | MEDLINE | ID: mdl-38507081

Autoimmune encephalitis is a relatively novel nosological entity characterized by an immune-mediated damage of the central nervous system. While originally described as a paraneoplastic inflammatory phenomenon affecting limbic structures, numerous instances of non-paraneoplastic pathogenesis, as well as extra-limbic involvement, have been characterized. Given the wide spectrum of insidious clinical presentations ranging from cognitive impairment to psychiatric symptoms or seizures, it is crucial to raise awareness about this disease category. In fact, an early diagnosis can be dramatically beneficial for the prognosis both to achieve an early therapeutic intervention and to detect a potential underlying malignancy. In this scenario, the radiologist can be the first to pose the hypothesis of autoimmune encephalitis and refer the patient to a comprehensive diagnostic work-up - including clinical, serological, and neurophysiological assessments.In this article, we illustrate the main radiological characteristics of autoimmune encephalitis and its subtypes, including the typical limbic presentation, the features of extra-limbic involvement, and also peculiar imaging findings. In addition, we review the most relevant alternative diagnoses that should be considered, ranging from other encephalitides to neoplasms, vascular conditions, and post-seizure alterations. Finally, we discuss the most appropriate imaging diagnostic work-up, also proposing a suggested MRI protocol.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Limbic Encephalitis , Humans , Encephalitis/diagnostic imaging , Hashimoto Disease/diagnostic imaging , Autoantibodies , Seizures , Radiologists , Limbic Encephalitis/diagnostic imaging
12.
Clin Biochem ; 126: 110746, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462203

A rapidly expanding repertoire of neural antibody biomarkers exists for autoimmune central nervous system (CNS) disorders. Following clinical recognition of an autoimmune CNS disorder, the detection of a neural antibody facilitates diagnosis and informs prognosis and management. This review considers the phenotypes, diagnostic assay methodologies, and clinical utility of neural antibodies in autoimmune CNS disorders. Autoimmune CNS disorders may present with a diverse range of clinical features. Clinical phenotype should inform the neural antibodies selected for testing via the use of phenotype-specific panels. Both serum and cerebrospinal fluid (CSF) are preferred in the vast majority of cases but for some analytes either CSF (e.g. N-methyl-D-aspartate receptor [NMDA-R] IgG) or serum (e.g. aquaporin-4 [AQP4] IgG) specimens may be preferred. Screening using 2 methods is recommended for most analytes, particularly paraneoplastic antibodies. We utilize murine tissue-based indirect immunofluorescence assay (TIFA) with subsequent confirmatory protein-specific testing. The cellular location of the target antigen informs choice of confirmatory diagnostic assay (e.g. blot for intracellular antigens such as Hu; cell-based assay for cell surface targets such as leucine-rich glioma inactivated 1 [LGI1]). Titers of positive results have limited diagnostic utility with the exception of glutamic acid decarboxylase (GAD) 65 IgG autoimmunity, which is associated with neurological disease at higher values. While novel antibodies are typically discovered using established techniques such as TIFA and immunoprecipitation-mass spectrometry, more recent high-throughput molecular technologies (such as protein microarray and phage-display immunoprecipitation sequencing) may expedite the process of antibody discovery. Individual neural antibodies inform the clinician regarding the clinical associations, oncological risk stratification and tumor histology, the likely prognosis, and immunotherapy choice. In the era of neural antibody biomarkers for autoimmune CNS disorders, access to appropriate laboratory assays for neural antibodies is of critical importance in the diagnosis and management of these disorders.


Autoimmune Diseases of the Nervous System , Central Nervous System Diseases , Humans , Animals , Mice , Autoimmune Diseases of the Nervous System/diagnosis , Autoantibodies , Biomarkers , Immunoglobulin G
13.
Radiology ; 310(3): e230701, 2024 Mar.
Article En | MEDLINE | ID: mdl-38501951

Background Blood-brain barrier (BBB) permeability change is a possible pathologic mechanism of autoimmune encephalitis. Purpose To evaluate the change in BBB permeability in patients with autoimmune encephalitis as compared with healthy controls by using dynamic contrast-enhanced (DCE) MRI and to explore its predictive value for treatment response in patients. Materials and Methods This single-center retrospective study included consecutive patients with probable or possible autoimmune encephalitis and healthy controls who underwent DCE MRI between April 2020 and May 2021. Automatic volumetric segmentation was performed on three-dimensional T1-weighted images, and volume transfer constant (Ktrans) values were calculated at encephalitis-associated brain regions. Ktrans values were compared between the patients and controls, with adjustment for age and sex with use of a nonparametric approach. The Wilcoxon rank sum test was performed to compare Ktrans values of the good (improvement in modified Rankin Scale [mRS] score of at least two points or achievement of an mRS score of ≤2) and poor (improvement in mRS score of less than two points and achievement of an mRS score >2) treatment response groups among the patients. Results Thirty-eight patients with autoimmune encephalitis (median age, 38 years [IQR, 29-59 years]; 20 [53%] female) and 17 controls (median age, 71 years [IQR, 63-77 years]; 12 [71%] female) were included. All brain regions showed higher Ktrans values in patients as compared with controls (P < .001). The median difference in Ktrans between the patients and controls was largest in the right parahippocampal gyrus (25.1 × 10-4 min-1 [95% CI: 17.6, 43.4]). Among patients, the poor treatment response group had higher baseline Ktrans values in both cerebellar cortices (P = .03), the left cerebellar cortex (P = .02), right cerebellar cortex (P = .045), left cerebral cortex (P = .045), and left postcentral gyrus (P = .03) than the good treatment response group. Conclusion DCE MRI demonstrated that BBB permeability was increased in all brain regions in patients with autoimmune encephalitis as compared with controls, and baseline Ktrans values were higher in patients with poor treatment response in the cerebellar cortex, left cerebral cortex, and left postcentral gyrus as compared with the good response group. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Filippi and Rocca in this issue.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Female , Adult , Aged , Male , Capillary Permeability , Retrospective Studies , Encephalitis/diagnostic imaging , Magnetic Resonance Imaging
15.
Article Ru | MEDLINE | ID: mdl-38465807

Autoimmune encephalitis is a group of diseases researched by both neurologists and psychiatrists. Despite a large number of studies and practical recommendations, the differential diagnosis and early diagnostics still remains an important issue. The most difficult to diagnose are cases that debut as mental disorders and/or occur without neurological symptoms. The literature review presents the current state of the problem with an emphasis on the practice of a psychiatrist.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Mental Disorders , Humans , Encephalitis/diagnosis , Hashimoto Disease/diagnosis , Mental Disorders/diagnosis
16.
Neurology ; 102(7): e209187, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38484225

Kelch-like protein-11 (KLHL11) immunoglobulin G (IgG) is a recently reported paraneoplastic autoantibody associated with rhombencephalitis, which commonly presents with ataxia, diplopia, vertigo, hearing loss, tinnitus, and gaze palsies. The association of this high-risk paraneoplastic autoantibody with testicular germ cell tumors is widely accepted, but it has not been associated with Müllerian tumors. In this study, we report a woman without a known germ cell tumor presenting with signs and symptoms suggesting autoimmune encephalitis. She was found to have metastatic ovarian serous carcinoma with KLHL11 immunoreactivity on histopathology. This case demonstrates a rare cancer association of KLHL11 IgG-seropositive rhombencephalitis with Müllerian tumor and highlights that this autoantibody can also be detected in female patients. Thus, this case expands on the current knowledge of KLHL11-related autoimmune encephalitis including the paraneoplastic presentation, associated tumor types, and management of this syndrome in women.


Autoimmune Diseases of the Nervous System , Deafness , Encephalitis , Hashimoto Disease , Hearing Loss , Testicular Neoplasms , Female , Humans , Autoantibodies , Carrier Proteins , Hearing Loss/etiology , Immunoglobulin G
17.
Handb Clin Neurol ; 200: 365-382, 2024.
Article En | MEDLINE | ID: mdl-38494290

The detection of neural antibodies in patients with paraneoplastic and autoimmune encephalitis has majorly advanced the diagnosis and management of neural antibody-associated diseases. Although testing for these antibodies has historically been restricted to specialized centers, assay commercialization has made this testing available to clinical chemistry laboratories worldwide. This improved test accessibility has led to reduced turnaround time and expedited diagnosis, which are beneficial to patient care. However, as the utilization of these assays has increased, so too has the need to evaluate how they perform in the clinical setting. In this chapter, we discuss assays for neural antibody detection that are in routine use, draw attention to their limitations and provide strategies to help clinicians and laboratorians overcome them, all with the aim of optimizing neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Autoantibodies , Encephalitis/diagnosis , Hashimoto Disease/diagnosis
18.
Curr Opin Crit Care ; 30(2): 142-150, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38441114

PURPOSE OF REVIEW: The present review summarizes the diagnostic approach to autoimmune encephalitis (AE) in the intensive care unit (ICU) and provides practical guidance on therapeutic management. RECENT FINDINGS: Autoimmune encephalitis represents a group of immune-mediated brain diseases associated with antibodies that are pathogenic against central nervous system proteins. Recent findings suggests that the diagnosis of AE requires a multidisciplinary approach including appropriate recognition of common clinical syndromes, brain imaging and electroencephalography to confirm focal pathology, and cerebrospinal fluid and serum tests to rule out common brain infections, and to detect autoantibodies. ICU admission may be necessary at AE onset because of altered mental status, refractory seizures, and/or dysautonomia. Early management in ICU includes prompt initiation of immunotherapy, detection and treatment of seizures, and supportive care with neuromonitoring. In parallel, screening for neoplasm should be systematically performed. Despite severe presentation, epidemiological studies suggest that functional recovery is likely under appropriate therapy, even after prolonged ICU stays. CONCLUSION: AE and related disorders are increasingly recognized in the ICU population. Critical care physicians should be aware of these conditions and consider them early in the differential diagnosis of patients presenting with unexplained encephalopathy. A multidisciplinary approach is mandatory for diagnosis, ICU management, specific therapy, and prognostication.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Encephalitis/diagnosis , Encephalitis/therapy , Seizures , Intensive Care Units , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/therapy
19.
Radiology ; 310(3): e230397, 2024 Mar.
Article En | MEDLINE | ID: mdl-38441089

Background Translocator protein (TSPO) PET has been used to visualize microglial activation in neuroinflammation and is a potential imaging tool for detecting autoimmune encephalitis (AIE). Purpose To compare the detection rate between TSPO radioligand fluorine 18 (18F) DPA-714 PET and conventional MRI and assess the relationship between 18F-DPA-714 uptake and clinical features in participants with AIE. Materials and Methods Healthy volunteers and patients with AIE were enrolled in this prospective study between December 2021 and April 2023. All participants underwent hybrid brain 18F-DPA-714 PET/MRI and antibody testing. Modified Rankin scale scoring and AIE-related symptoms were assessed in participants with AIE. Positive findings were defined as intensity of 18F-DPA-714 uptake above a threshold of the mean standardized uptake value ratio (SUVR) plus 2 SD inside the corresponding brain regions of healthy controls. The McNemar test was used to compare the positive detection rate between the two imaging modalities; the independent samples t test was used to compare continuous variables; and correlation with Bonferroni correction was used to assess the relationship between 18F-DPA-714 uptake and clinical features. Results A total of 25 participants with AIE (mean age, 39.24 years ± 19.03 [SD]) and 10 healthy controls (mean age, 28.70 years ± 5.14) were included. The positive detection rate of AIE was 72% (18 of 25) using 18F-DPA-714 PET compared to 44% (11 of 25) using conventional MRI, but the difference was not statistically significant (P = .065). Participants experiencing seizures exhibited significantly higher mean SUVR in the entire cortical region than those without seizures (1.23 ± 0.21 vs 1.15 ± 0.18; P = .003). Of the 13 participants with AIE who underwent follow-up PET/MRI, 11 (85%) demonstrated reduced uptake of 18F-DPA-714 accompanied by relief of symptoms after immunosuppressive treatment. Conclusion 18F-DPA-714 PET has potential value in supplementing MRI for AIE detection. Clinical trial registration no. NCT05293405 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zaharchuk in this issue.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Microglia , Pyrazoles , Pyrimidines , Humans , Adult , Prospective Studies , Magnetic Resonance Imaging , Positron-Emission Tomography , Seizures , Receptors, GABA
20.
Sci Rep ; 14(1): 5352, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438516

Detection of neuronal antibodies for autoimmune encephalitis and paraneoplastic neurological syndromes relies on commercially available cell-based assays and lineblots. However, lineblots may reveal the presence of neuronal antibodies in patients with various non-autoimmune etiologies. Herein we describe patients with non-autoimmune etiologies (cohort B) and detectable neuronal antibodies and compare them to definite cases of autoimmune encephalitis (cohort A) for differences in clinical data. All patients positive for at least one neuronal antibody were retrospectively evaluated for autoimmune encephalitis and/or paraneoplastic neurological syndrome between 2016 and 2022. 39 cases in cohort B and 23 in cohort A were identified. In cohort B, most common diagnoses were neurodegenerative disorders in 9/39 (23.1%), brain tumors in 6/39 (15.4%) while most common detected antibodies were anti-titin (N10), anti-recoverin (N11), anti-Yo (N8) and all were detected in serum only. Differential aspects between cohort A and B were CSF pleocytosis (14/23 (60.8%) vs 11/35 (31.4%), p = 0.042, respectively), MRI features suggestive of encephalitis (6/23 (26.1%) vs 0 (0%), p = 0.002, respectively) and epilepsy restricted to temporal lobes (14/23 (60.9%) vs 2/30 (6.7%), p = 0.0003, respectively). A large proportion of lineblot results were non-specific when only serum was tested and were frequently found in non-autoimmune neurological conditions.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Paraneoplastic Syndromes , Humans , Seroepidemiologic Studies , Retrospective Studies , Encephalitis/diagnosis , Autoimmune Diseases of the Nervous System/diagnosis , Autoantibodies
...